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Parametric Evaluation of Lifetime Data
J. Shell1

The proposed large array of small antennas for the DSN requires very reliable
systems. Reliability can be estimated from life tests of the critical components of
the system. This article is a tutorial introduction of a commonly used parametric
distribution for lifetime analysis, known as the Weibull distribution.

I. Introduction

The development of a very large array of small antennas for the DSN is under consideration. Each
receiving station will likely be equipped with a closed-cycle refrigerator (CCR) to cryogenically cool the
low-noise amplifiers and microwave feed components. A previous article examined a non-parametric
approach, known as the product-limit (PL) estimate, to the analysis of lifetime data [1]. This article
considers the application of a parametric probability distribution, known as the Weibull distribution, to
the analysis of lifetime data. Others have analyzed CCR lifetime data using this distribution [2,3]. The
Weibull distribution is popular because of its versatility. Depending on the values of the parameters, an
increasing, constant, or decreasing hazard rate can be modeled. There is both a two-parameter and a
three-parameter version of the Weibull distribution. This article will be concerned with the two-parameter
version.

The article is organized as follows. Section II presents the Weibull distribution and a closely re-
lated distribution known as the extreme-value distribution. Section III discusses graphical analysis and
goodness-of-fit tests. These techniques can indicate if the use of a Weibull distribution is not appro-
priate. Section IV presents maximum-likelihood point estimates for the Weibull parameters. Section V
discusses the calculation of confidence intervals for the survivor function. A few examples are presented
in Section VI using computer programs developed by the author. Section VII presents some conclusions.

II. Definition of the Weibull and the Extreme-Value Distribution

The Weibull probability density function (pdf) has the form

f(t, α, β) =
β

α

(
t

α

)β−1

exp

(
−

(
t

α

)β
)

, t ≥ 0, β > 0, α > 0 (1)
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where t represents time; α is called the scale parameter and determines the spread of the distribution.
It has the dimensions of time, and t = α corresponds to the 63rd percentile of the distribution. This
property is seen by integrating Eq. (1):

∫ α

0

f(t, α, β)dt = − exp
(
− t

α

)β
∣∣∣∣∣
α

0

= 1 − 1
e

= 0.632

β is called the shape parameter and is dimensionless. For β = 1, the Weibull distribution reduces to the
exponential distribution. For 3 ≤ β ≤ 4, the Weibull distribution resembles the normal distribution.

From the basic definition of the survivor (reliability) function,

S(t) = Pr{T ≥ t} =
∫ ∞

t

f(y)dy

the survivor function S(t) for the Weibull distribution is given by

S(t, α, β) = exp

(
−

(
t

α

)β
)

, t ≥ 0 (2)

From the definition

h(t, α, β) =
f(t, α, β)
S(t, α, β)

the hazard function for the Weibull distribution is given by

h(t, α, β) =
β

α

(
t

α

)β−1

, t ≥ 0 (3)

If β > 1, the hazard function increases with time; if β = 1, it is independent of time; and if β < 1, it
decreases with time.

Weibull-distributed data can be converted to extreme-value-distributed data using

x = y−1(t) = ln(t)

b =
1
β

u = ln(α)




(4)

The new probability density function can be calculated from the Weibull pdf using

g(x) = f
(
y(x)

) ∣∣∣∣dy

dx

∣∣∣∣
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This leads to the extreme-value probability density function

g(x, u, b) =
1
b

exp
(

x − u

b

)
exp

(
− exp

(
x − u

b

))
, −∞ < x < ∞,−∞ < u < ∞, b > 0 (5)

Now the shape parameter is gone, scale and location parameters remain. The goodness-of-fit tests and
confidence intervals presented later are based on this extreme-value distribution. The probability density
is a function of only one variable,

w =
x − u

b

where u is a location parameter and b is a scale parameter. The survivor function is given by

S(w) = exp
(
− exp(w)

)
(6)

The hazard function is given by

h(w, b) =
1
b

exp (w) , −∞ ≤ w ≤ ∞ (7)

III. Checking for Weibull Behavior

Before using a particular parametric model, some determination must be made as to whether or not the
sample could realistically have come from a population governed by the chosen model. Two approaches
used for this are graphing the data and goodness-of-fit tests. In general, it is also a good idea to try another
model to see how much the conclusions change. A comparison with a non-parametric analysis may be
worthwhile. It should be stressed that these procedures are designed to reject a model as inappropriate;
they cannot “prove” that the model chosen is correct. The decision of whether or not a given model is
valid is highly dependent on the amount of data. The more data, the better are the chances of rejecting
an inappropriate model. Generally, if only a few data points are available, even poorly fitting models
cannot be strongly rejected.

A. Graphing the Data

We begin with a common technique for checking whether the data follow a Weibull distribution. From
Eq. (2), it is seen that

ln
(
− ln

[
S(t, α, β)

])
= β ln t − β lnα (8)

Thus, if the data follow a Weibull distribution, a plot of ln(− ln[S(t)]) versus ln(t) should approximate a
straight line. One approach is to calculate the product-limit estimate of the survivor function, SPL(t),
and plot ln(− ln[SPL(t)]) versus ln(t). If the plot bows up or down significantly from a straight line, then
another distribution may be appropriate. Or, the three-parameter Weibull distribution may be necessary
to fit the data. In that case, the Weibull pdf is given by
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f(t, α, β, µ) =
β

α

(
t − µ

α

)β−1

exp

(
−

(
t − µ

α

)β
)

, t ≥ µ

The location parameter µ is the time before which no failures occur. A non-zero value for this parameter
may cause bowing of the plot [4]. Another explanation for deviation from a straight line is that there is
more than one failure mechanism. Plotting also helps indicate if some of the data are suspect and provides
a first indication of the parameter values. The slope of the line is β, and −β lnα is the y-intercept. An
excellent discussion of probability plotting and its use in statistical model selection can be found in [5].

B. Goodness-of-Fit Test

The objective of the test is to determine if the sample is consistent with being drawn from a population
characterized by a certain distribution, rather than to demonstrate it beyond all doubt. In this procedure,
a random variable, called the test statistic, is evaluated from the observed data. The probability of
obtaining a given value of the test statistic, assuming the sample is drawn from a population that follows
the distribution, must be known. A quantity α, called a “significance level,” is specified for the test. It
has the following meaning: If the population does indeed follow the assumed distribution, the probability
of the value of the test statistic falling outside a specified range is α. The value for α is usually chosen
less than or equal to 0.10. In other words, the range is usually chosen so that the probability of rejecting
the assumed distribution, when it is in fact correct, is relatively small.

Another point regarding goodness-of-fit tests should be mentioned. There exist several test statistics,
such as the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling, whose distributions do
not depend on the choice of parametric distribution that is being fit to the data. In that sense, they
are “distribution free.” However, the distribution percentiles of these test statistics require that the
parameters of the fitting distribution be known. Unfortunately, in most cases arising in engineering,
the parameters are also unknown and must be estimated from the data. Modified versions of the above
tests can be used if estimates of unknown parameters are used, but then the test statistic is no longer
distribution free. This complicates the calculation of their percentiles. Furthermore, the percentiles are
generally not accurate for small samples. We choose instead to discuss goodness-of-fit tests that do not
require the parameters of the distribution be known and that are specific to the Weibull (or extreme-value)
distribution.

Mann, Scheuer, and Fertig [6] have developed a test for the extreme-value distribution. It is based on
the fact that the left tail of an extreme-value distribution is longer than most other distributions, and its
right tail is shorter. The test of Mann, Scheuer, and Fertig is applicable to censored data.

More recently, Shapiro and Brain have developed a goodness-of-fit test [7]. It is similar to the
W-test for normal behavior as discussed in [5]. It is thought to be an effective test against a wide
class of alternative distributions. Their test, like that of Mann, Scheuer, and Fertig, is for an extreme-
value distribution. Therefore, the logarithm of the failure times must be taken before applying the test.
The equations for calculating the test statistic, denoted W , for the case of n failures are given below:
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xi = ln ti

wi = ln
(

n + 1
n + 1 − i

)
, i = 1, 2, · · · , n − 1, wn = n −

n−1∑
i=1

wi

wn+i = wi(1 + lnwi) − 1, i = 1, 2, · · · , n − 1, w2n = 0.4228n −
n−1∑
i=1

wn+i

L1 =
n∑

i=1

wixi, L2 =
n∑

i=1

wn+ixi

b =
0.6079L2 − 0.2570L1

n

S2 =
n∑

i=1

x2
i −

1
n

(
n∑

i=1

xi

)2

, W =
nb2

S2




(9)

The subscript defines the order number, assuming the data have been ordered with the earliest failure
time first, that is, t1 < t2 < · · · tn. The equations are appropriate for complete data. A few percentiles
of the distribution for the W-test statistic are given in [7]. An example using this approach is presented
in Section VI.

IV. Maximum-Likelihood Estimation of α, β
Cohen has derived the maximum-likelihood estimates for progressively censored data [8], and they

are presented below. (His notation has been altered slightly to be consistent with the above equations.)
Consider a sample of N units, of which n are run to failure. Suppose the censoring occurs in k stages at
times Ti, and at those times ri units are removed from test. The failure times are denoted by ti. The
maximum-likelihood estimate (MLE) for β, denoted by β̂, can be found by solving

∑∗∗
tβi ln ti∑∗∗

tβi
− 1

β
=

1
n

n∑
i=1

ln ti (10)

The MLE for α, denoted by α̂ then is determined from

α̂ =

(∑∗∗ tβ̂i
n

)1/β̂

(11)

In these equations,

∑∗∗
tβi ln ti =

n∑
i=1

tβi ln ti +
k∑

i=1

riT
β
i lnTi
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and

∑∗∗
tβi =

n∑
i=1

tβi +
k∑

i=1

riT
β
i

An example of the use of these equations will be given in Section VI.

V. Confidence Interval for the Survivor Function

As in the case for non-parametric analysis, different methods may be used to calculate confidence
intervals for the survivor function for complete and censored data. One approach for the case of complete
data or failure-censored data is called the conditional method. This is the approach used by Lawless
[9]. In principle, it applies to any size of sample. It is a Bayesian approach in which one conditions on
ancillary statistics. The classical (unconditional) approach generally requires Monte Carlo simulations.
The results of such simulations are published in tabular form for various numbers of items under test
with corresponding variable numbers of failures. We will follow Lawless’ treatment since tables are not
required. Generally, Bayesian and classical approaches give similar results [10]. We discuss this point
further in Section VI. The time-censored data are analyzed using the likelihood-ratio technique (LRT).
Some discussion of the LRT is presented in [1].

A. Conditional Method

Calculation of confidence intervals for Weibull-distributed data is a fairly involved process. However,
computer programs can be written to perform the calculations. The author has written computer pro-
grams to calculate maximum-likelihood estimates and confidence intervals. A brief description of the
conditional method for finding the confidence limits of the survivor function follows. We use an argu-
ment for probability distributions whose pdf’s are functions of a single variable, i.e., (x − u)/b. From
Eq. (5), the extreme-value distribution is such a distribution. If we are calculating confidence intervals
for Weibull-distributed data, the logarithm of the failure time data is used as discussed in Eq. (4).

From Eq. (5), the probability density function has the form

g(x, u, b) =
1
b
f

(
x − u

b

)

The pth quantile of this distribution, xp, satisfies the equation

∫ xp

−∞
g(x, u, b)dx =

∫ xp

−∞
f

(
x − u

b

)
dx

b
= p (12)

Let S be the survivor function associated with this distribution. If we define a change of random variable,
w = (x − u)/b, then we can write

∫ ∞

xp

f

(
x − u

b

)
dx

b
=

∫ ∞

wp

f(w)dw = S(wp)

Using the fact that
∫ ∞
−∞ f(w)dw = 1 and

∫ wp

−∞ f(w)dw = p, it follows that
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(1 − p) = S(wp)

For the case of the extreme-value distribution, from Eq. (6),

(1 − p) = exp
(
− exp(wp)

)
(13)

or

ln
(
− ln(1 − p)

)
= wp

Suppose we seek a γ lower confidence bound on the survivor function at the “time” xo = ln to. This
can be obtained from a lower confidence limit on xp in the following way. Suppose lL(x) is a γ lower
confidence limit on xp based on data x. Then

Pr{lL(x) ≤ xp} = γ

Since the survivor function is a monotone decreasing function of x, this implies

Pr
{
S

(
lL(x)

)
≥ S(xp)

}
= γ

But, from Eq. (6),

S(xp) = exp

(
− exp

(
xp − u

b

) )
= exp

(
− exp(wp)

)
= 1 − p

Thus, if one can determine p such that lL(x) = xo, then

Pr
{
S(xo) ≥ (1 − p)

}
= γ (14)

and we have the lower bound we seek.

Now the lower confidence limit, lL(x), of xp can be obtained if a random variable containing xp whose
distribution is known can be found. The quantity Zp, given by

Zp =
xp − û(x)

b̂(x)
(15)

satisfies this requirement. For any given γ and p, we can find zp,γ such that

Pr
{
Zp ≥ zp,γ |a

}
= γ (16)

The vertical bar followed by the “a” indicates that this is a conditional probability. It is dependent on the
ancillary statistic a. This is a characteristic feature of the Bayesian approach to calculating confidence
intervals. We will drop the notation, |a}, writing instead for simplicity,
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Pr{Zp ≥ zp,γ} = γ

Now, substituting from Eq. (15),

Pr

{
xp − û(x)

b̂(x)
≥ zp,γ

}
= γ

or

Pr
{
zp,γ b̂(x) + û(x) ≤ xp

}
= γ

Thus, zp,γ b̂(x)+ û(x) is the lower confidence limit, lL(x), that we seek. So we need only determine p such
that

zp,γ b̂(x) + û(x) = xo

or

zp,γ =
xo − û(x)

b̂(x)
(17)

Once we have the data and select a “time,” xo, the value of zp,γ is determined. Once the confidence level
is selected, we need only find the value of p such that Eq. (16) is true. If p satisfies Eq. (16), then (1− p)
is a lower bound for S(xo). A similar argument holds for the upper bound. In summary, the steps to find
the confidence interval for the survivor function at time to are

(1) Calculate xo = ln(to).

(2) Calculate the maximum-likelihood estimates û(x), b̂(x) of the extreme-value distribution.

(3) Calculate zp,γ using Eq. (17).

(4) Choose a value for γ; then perform a computer search to find the value of p that satisfies
Eq. (16).

(5) Assign the value (1 − p) as the lower confidence limit of S(to).

B. Likelihood-Ratio Method

We next present a method based on the likelihood-ratio technique. The philosophy behind this tech-
nique is discussed in [1]. The present treatment follows that of [11]. This approach applies to both
time-censored and failure-censored data. It works best for moderate-to-large sample sizes. Suppose that
a confidence interval is desired for

S(to) = exp

(
−

(
to
α

)β
)

(18)

We consider testing the hypothesis Ho : S(to) = So versus the hypothesis H1 : S(to) �= So. The log-
likelihood function for the Weibull distribution is
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log L(α, β) = n log β − nβ log α + (β − 1)
∑

failures

log ti −
∑

all times

(
ti
α

)β

(19)

Following our previous notation, n is the number of failure times whereas N is the total number of units.
The likelihood ratio for testing Ho versus H1 is

LR =
L(α̃, β̃)

L(α̂, β̂)
(20)

The numerator of LR is maximized under the hypothesis Ho. This is achieved by setting S(to) = So in
Eq. (18) and solving for α. The result is

α =
to

(− lnSo)
1/β

(21)

This expression is substituted into the log-likelihood function, differentiated with respect to β, and set
equal to zero. The result is

n

β
− n ln to +

∑
failures

ln ti + ln(So)
∑

all times

(
ti
to

)β

ln
(

ti
to

)
= 0 (22)

We denote the root of this equation β̃. Putting this value into Eq. (21) determines α̃. These values,
substituted into Eq. (19), form the numerator of LR. The denominator of LR is the likelihood function
maximized without any restrictions on α and β. In other words, α and β are the maximum-likelihood
values given by Eqs. (10) and (11). The set of values So such that Λ = −2 ln(LR) ≤ χ2

(1),γ forms a γ

confidence interval for S(to). Here, χ2
(1),γ is the γth percentile of the chi-square distribution with one

degree of freedom.

VI. Examples

We now illustrate some of the above results. We begin by taking the data from Table 1 of [1]. It is
reproduced here in Table 1 for convenience. Following Section III.A, we construct a plot of ln(− ln[SPL(t)])
versus ln(t). This is shown in Fig. 1. The data appear as though they may follow a Weibull distribution.
To obtain a less subjective estimate, we use the goodness-of-fit test of Shapiro and Brain. The W-test
statistic is calculated to be 0.4930. The percentiles of the W-distribution for n = 24 can be estimated.
We find W0.05 = 0.4095 and W0.95 = 0.9217. Since W lies between these two values, the test is not
rejected at the 10 percent significance level.

From Fig. 1 we also can estimate α and β. For a less subjective estimate, we can use Eqs.(10) and (11).
The maximum-likelihood point estimates for these data are α̂ = 12.62 and β̂ = 2.54. That line also is
shown in Fig. 1. Figure 2 compares the survivor functions using these values of α, β and the product-limit
estimate. The greatest deviation is for the earlier time data, as also was indicated in Fig. 1.

Confidence intervals for the data in Table 1 can be calculated using the conditional method described
above because the data are complete. The values at 9,000 hours, 13,000 hours, and 16,000 hours are
shown in Table 2. The results are shown along with the values calculated using the binomial distribu-
tion from [1]. It is noteworthy that the 90 percent confidence interval is significantly smaller assuming the
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Table 1. Survivor functions for 24 units
with complete failure (from [1]).

Failure
time, S(t)
kh

0.0 1.0

2.0 0.958

3.25 0.917

4.1 0.875

5.6 0.833

6.05 0.792

8.01 0.750

8.9 0.708

9.25 0.667

9.4 0.625

9.8 0.583

10.1 0.542

10.6 0.500

12.0 0.458

12.5 0.417

12.9 0.375

13.3 0.333

13.6 0.292

14.0 0.250

15.0 0.208

15.5 0.167

16.9 0.125

18.0 0.083

18.5 0.042

20.0 0.000

data follow a Weibull distribution, as seen by comparing the values in the columns labeled “Delta.” A
possible explanation is that the binomial estimate uses only the number of survivors at time to to estimate
the confidence interval. The actual failure times are not used. Fitting the data to a Weibull distribution
uses the known failure times.

As a check of the conditional approach to calculating confidence intervals, we will compare the lower
bound of the survivor function for the completely censored data obtained using the program written
by the author to results based on Monte Carlo simulations [12]. The results from [12] are actually for
complete failure of 25 units, but this is deemed close enough to the 24 units presented above to make the
comparison meaningful. Figure 3 shows the comparison of the lower bounds for the survivor functions
for the two cases. The survivor (reliability) plot begins at 0.5 because this is where the tabular data from
[12] begin. The agreement is rather good.

Next we consider the censored data from [1]. They are reproduced here as Table 3. The data are
for a total of 24 units, 16 of which are run until failure, and 8 of which are removed before failure.
The maximum-likelihood point estimates, using Eqs. (10) and (11), for these data are α̂ = 14.88 and
β̂ = 2.13. A plot of ln(− ln[SPL(t)]) versus ln(t) is shown in Fig. 4 along with the maximum-likelihood
fit to a Weibull distribution. Figure 5 compares the survivor functions using these values of α, β and the
product-limit estimate.
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Fig. 1.  ln(−ln[SPL(t )]) versus ln(t ) for the data in

Table 1.  The line drawn corresponds to β = 2.54

and α = 12.62.
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Fig. 2.  Product-limit estimate and Weibull survi-
vor functions for the data in Table 1.  For the
Weibull plot, β = 2.54 and α = 12.62.
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Table 2. Confidence limits of 90 percent at 9,000, 13,000, and 16,000 hours
for the complete data of Table 1.

9,000 h Delta 13,000 h Delta 16,000 h Delta 90 percent confidence limits

0.540 0.251 0.101 SL (using conditional method)
0.205 0.197 0.160

0.745 0.448 0.261 SU (using conditional method)

0.521 0.211 0.059 SL (from [1])
0.333 0.352 0.283

0.854 0.563 0.342 SU (from [1])
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Fig. 3.  A comparison of the lower bound (90 per-
cent confidence level) of the reliability using the
conditional approach and the Monte Carlo
approach of Thoman, Bain, and Antle.
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THOMAN et al.
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Confidence intervals for the data in Table 3 can be calculated using the likelihood-ratio method,
assuming the data follow a Weibull distribution. The values at 9,000 hours, 13,000 hours, and 16,000 hours
are shown in Table 4. The results are shown along with the values calculated using the likelihood- ratio
method of Thomas and Grunkemeier [13] for a non-parametric fit. The interval sizes are nearly the same.
At 9,000 hours, the Weibull interval is centered a little lower than the corresponding non-parametric
interval. At 13,000 and 16,000 hours, the Weibull interval is centered a little higher than the corresponding
non-parametric interval. This is probably due to the fact that the Weibull fit to the data is slightly below
the product-limit estimate at 9,000 hours and slightly above at 13,000 and 16,000 hours.

VII. Conclusions

We have presented a discussion of the Weibull probability distribution and the related extreme-value
distribution. Graphical and analytical means for testing whether the data could have been drawn from
a Weibull-distributed population are presented. Graphical and analytical techniques for determining the
shape and scale parameter were presented. We discussed the calculation of confidence intervals for the
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survivor function for complete and censored data. The formalism was illustrated by comparing the results
of a parametric analysis to a non-parametric analysis using data from [1].

Survivor functions based on the parametric and non-parametric approaches for the complete and
censored data are shown in Figs. 2 and 5. Comparison of the confidence intervals is interesting. For
the complete data, the confidence intervals for the parametric fit are significantly smaller than for the
non-parametric fit. Published lower bounds using Monte Carlo simulations agree quite well with the lower
bounds calculated using the conditional approach. For the censored data, where both methods are based
on the likelihood-ratio approach, the confidence intervals are nearly the same size.

Table 3. Survivor functions for 24 units, 8 of which
are censored units (from [1]).

Failure Loss
time, time, S2

kh kh

0.0 — 1.000

2.0 — 0.958

3.25 — 0.917

— 4.1 0.917

5.6 — 0.873

6.05 — 0.829

8.01 — 0.786

8.9 — 0.742

9.25 — 0.698

— 9.4 0.698

9.8 — 0.652

10.1 — 0.605

— 10.6 0.605

12.0 — 0.555

12.5 — 0.504

12.9 — 0.454

13.3 — 0.404

— 13.6 0.404

— 14.0 0.404

15.0 — 0.336

15.5 — 0.269

16.9 — 0.202

— 18.0 0.202

— 18.5 0.202

— 20.0 0.202
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Fig. 4.  ln(−ln[SPL(t )]) versus ln(t ) for the data in

Table 3.  The line drawn corresponds to β = 2.13

and α = 14.88.
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vor functions for the data in Table 3.  For the
Weibull plot, β = 2.13 and α = 14.88.
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Table 4. Confidence limits of 90 percent at 9,000, 13,000, and 16,000 hours
for the censored data of Table 3.

9,000 h Delta 13,000 h Delta 16,000 h Delta 90 percent confidence limits

0.543 0.306 0.156 SL (using LRM [Weibull])
0.299 0.339 0.351

0.842 0.645 0.507 SU (using LRM [Weibull])

0.578 0.284 0.120 SL (from [1])
0.292 0.345 0.335

0.870 0.629 0.455 SU (from [1])
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